home | index | units | counting | geometry | algebra | trigonometry | calculus | functions
analysis | sets & logic | number theory | recreational | misc | nomenclature & history | physics

Final Answers
© 2000-2020   Gérard P. Michon, Ph.D.

Modules


  • Modules  are vectorial structures over a  ring of scalars  (instead of a  field).
  • Free modules  have a basis similar to that of vector spaces.
  • Injective modules.  The rationals form an injective module over the integers.
  • Projective modules.  Due to  Eilenberg  &  Cartan  (1956).
  • Flat modules.  Devised by  Jean-Pierre Serre  in 1956.

Related articles on this site:

 Michon

Related Links (Outside this Site)

Théorie des opérations linéaires  (Banach spaces)  by  Stefan Banach  (1932).
 
Affine Space  |  Vector Space  |  Linear Algebra  |  Algebra over a field  |  Clifford Algebra
 
border
border

Module Theory


(2006-03-28)   Module over a Ring  A
A vectorial structure where  division  by a scalar isn't "well defined".

module  obeys the same basic rules as a vector space, but its  scalars  are only required to form a ring;  a nonzero scalar need not have a reciprocal...

A module over  A  may be called an  A-module.  For example,   Q   is a   Z -module.  This is to say that the rationals form a module over the integers  (this particular example gave birth to the concept of an  "injective module").

Module   |   Free module   |   Projective module   |   Flat module   |   Galois module


(2020-05-24)   Free Modules
They have a vector-like basis.  Not all modules do.

Given a  ring  A  and a  set  B,  the free  A-module of basis  B  consists of all  formal  linear combinations  of elements of  S,  with  coefficients  in  A.

It's understood that a  formal linear combination  is zero only when all its coefficients are.  So the above definition means that all elements of  B  are  linearly independent in the module so generated.  Just like in the case of vector spaces,  what we call a  basis  is a linearly-independent set of generators.  Recall that a  linear combination  is only allowed to have a finite number of nonzero coefficients.  The above free module is denoted:

A(B)

If  B  is infinite,  that's  much smaller  than the module  AB  (consisting of all applications from  B  to  A,  which can be added and scaled pointwise)  which  B  is much too small to generate!

A free module over  Z  (a free Z-module)  is called a  free abelian group.

Free module   |   Free abelian group   |   Projective module   |   Flat module   |   Galois module


(2020-05-26)   Injective Modules
The rationals form an  injective module  over the integers.

 Come back later, we're
 still working on this one...

Injective module   |   Injective resolution


(2020-05-24)   Projective Modules (Eilenberg & Cartan, 1956)
A generalization of  Free Modules.

 Come back later, we're
 still working on this one...

Projective module
Kaplansky's theorem   |   Irving Kaplansky (1917-2006)
Flat module   |   Galois module

 Serre
Jean-Pierre Serre
 

(2020-05-24)   Flat Modules   (Jean-Pierre Serre, 1956)

 Come back later, we're
 still working on this one...

Flat module (1956)   |   Jean-Pierre Serre (1926-)

border
border
visits since May 26, 2020
 (c) Copyright 2000-2020, Gerard P. Michon, Ph.D.