home | index | units | counting | geometry | algebra | trigonometry & functions | calculus
analysis | sets & logic | number theory | recreational | misc | nomenclature & history | physics
 The only magic hexagon.

Final Answers
© 2000-2019   Gérard P. Michon, Ph.D.

Mathematical Posers

[Man] is only completely a man when he plays.
Friedrich von Schiller   (1759-1805) 
  • Question Six.  International Mathematical Olympiads  (1988).
 Michon
 
 border

Related articles on this site:

Related Links (Outside this Site)

Mathpuzzle.com, by Ed Pegg Jr: Penrose's Unilluminable Room (2007-07-29)
Jaap's Puzzle Page, by  Jaap Scherphuis.
Braingle brain teasers.  |  Ludimaths (French)
George Peter Jelliss  |  Mike Keith
Recreational Mathematics by David Eppstein (UC Irvine)  |  PuzzleDepot
Hooda Math  Educational games for grades  1-8.
Brainteasers, Puzzles & Quizzes, for Nurses at www.nursefriendly.com.
The Well-Posed Puzzle   |   Jim Loy's Puzzle Page   |   Grey Labyrinth
BrainBashers   |   Math Magic, by  Erich Friedman.
Project Euler, by  Colin Hughes  (MathsChallenge.net).
 
Eugène Strens Recreational Mathematics Collection (University of Calgary)
Math Puzzles in Sam Loyd's Cyclopedia listed by Donald Knuth (UC Stanford).
Dudeney's Puzzles in The Weekly Dispatch (1896-1904), listed by  Don Knuth.
The Canterbury Puzzles  by Henry E. Dudeney  (Project Gutenberg  eBook)
The Unreasonnable Utility of Recreational Mathematics   and
Sources in Recreational Mathematics by  David Singmaster  (SBU, London).
CIJMComité International des Jeux Mathématiques.
 
The Crafty Puzzles Company :   Wooden puzzles & brain teasers for sale.
Puzzle Master, Inc. :   Brain teasers & puzzles for sale.
 
border
border

Mathematical Questions Designed to Baffle


(2017-08-12)  Question Six.  29th IMO,  (Canberra, 16 July 1988).
Let  a  and  b  be positive integers such that  ab+1  divides  ab2.  Show that   (ab2 / (ab+1)   is the square of an integer.

This problem was proposed by  Stephan Beck  (West Germany)  about whom nothing else is known.

The key is to consider the equation for a fixed value of the quotient  k  (we know that  k  is an integer and want to show it's a perfect square).

a2  +  b2   =   k  (ab + 1)

Descent :

From an hypothetical solution  (a,b)  let's derive a different one  (b,c) :

b2  +  c2   =   k  (bc + 1)

Subtracting the above from our original equation, we obtain:

c2  -  a2   =   k  b (c - a)

To have distincts solutions,  we rule out  c = a  and may divide by  (c - a):

c  +  a   =   k  b

Examining the Least Positive Pair of Solutions :

If  a  is the least possible  positive  solution for our choice of  k,  then  a  is no greater than  b  (or else we could swap the names to make it so).

0   <   a   ≤   b

With  c   =   k  b  -  a ,   the above shows that  (c,a)  satisfies the same algebraic condition as  (a,b).  However,  the integer  c  can't be positive because...

 Come back later, we're
 still working on this one...

u0
 (0) 
u1
 (m) 
un+2   =   m2 un+1  -  un OEIS
01   1.  
02   8, 30, 112, 418, 1560, 5822, 21728, 81090, 302632 ...  A052530 
03   27, 240, 2133, 18957, 168480, 1497363, 13307787 ... A065100
04   64, 1020, 16256, 259076, 4128960, 65804284 ... A154021
05   125, 3120, 77875, 1943755, 48516000, 1210956245 ... A154022
06   216, 7770, 279504, 10054374, 361677960, 13010352186 ... A154023
07   343, 16800, 822857, 40303193, 1974033600 ... A154024
08   512, 32760, 2096128, 134119432, 8581547520 ... A154025
09   729, 59040, 4781511, 387243351, 31361929920 ... A154026
010   1000, 99990, 9998000, 999700010, 99960003000 ... A154027
011   1331, 161040, 19484509, 2357464549, 285233725920 ...  
012   1728, 248820, 35827352, 5159033868, 742865048640 ...  

1988 IMO Problem 6  (Solution)  Art of Problem-Solving.
Another perpective on a famous problem  by  Luis Gómez S´nchez Alfaro  (2011).
Vieta Jumping  by  Yimin Ge  (Mathematical Reflections, 5, 2007).
Vieta Root Jumping   |   Wikipedia :   Vieta Jumping
 
The Legend of Question Six (8:44)  &  Solution (16:03)  by  Simon Pampena  (Numberphile, 2015-08-16).
1988 IMO Problem #6 (40:22)  by  Osman Nal   (2017-04-026).
Recollecting Question Six (10:56)  by  Terry Tao   (Numberphile, 2017-03-04).


(2017-09-03)  Coffin Problems  (1973-1989).
Discriminatory oral entrance exams to Moscow's elite Mekh-mat school.

 Come back later, we're
 still working on this one...

Entrance Examinations to the Mekh-mat  by  A. Shen  (The Mathematical Intelligencer, 16, 4, 1994).
Mekh-mat entrance examination problems  by  Ilan Vardi  (Polytechnique, 1999).
Coffins  by  Tanya Khovanova  (2008).
 
Simple Math Problems to Fool the Best (10:07)  by  Nakul Dawra   (Gold-Plated-Goof, 2017-08-25).

border
border
visits since August 12, 2017
 (c) Copyright 2000-2019, Gerard P. Michon, Ph.D.